

A 100 % Renewable Energy System In Belgium by 2050

Assessment of Different Long Term Trajectories to Transform the Current Belgian Energy System into a 100% Renewable Energy Mix

Eupen 17 January 2017

Authors : Wouter Nijs, Jan Duerinck, Danielle Devogelaer, Dominique Gusbin, Yves Marenne, Marco Orsini

Content

- » Background information
- » Definition of the scenarios
- » The challenge of intermittent renewable energy
- » Modelling approach: how we used the TIMES model
- » Exogenous assumptions
- » General results
- » Special results

Purpose of the project (and limits)

- » Study ordered end 2011 by 4 energy ministers
- The study defines different trajectories that can lead to an energy system exclusively based on renewable energy sources
 - » How to achieve a 100% renewable target in 2050 (electricity, heating and cooling, transport except aviation and sea transport)?
 - » What technologies are needed?
 - » What are the costs of these solutions?

» The study has to be perceived as a feasibility study

» To be completed by other analyses

》

100 % What : energy is more than electricity !

(as we all know - but sometimes forget)

» Energy balance Belgium; Final energy consumption (PJ, IEA, 2009)

Background information

Surface: 30.000 km² Population: 11 million (330p/km2) GDP: 350 billion € Final energy consumption: 1800 PJ Per capita final energy consumption: 150 % EU27 average or 75 % US Hydro limited to 120 MW Domestic fossil energy supply = 0 (1992)

Basic principles of TIMES model

- Partial equilibrium (energy) model
- Bottom-up optimisation model of the national energy system
- Detailed representation of energy-material flows and technologies (broad sense)
- Various alternative technological choices
- Up to 2050
- <u>Driving factor</u>: fulfilment of energy service demand (≠ energy demand)

Definitions of scenarios

REF

Fossil Benchmark scenario

Challenges of intermittent renewable energy Daily fluctuations

Challenges of intermittent renewable energy Longer perspective

Modelling approach: How we used the TIMES model

Security of supply

- Extending the temporal resolution to 78 periods in one year = 26 periods of two weeks x
 3 periods a day
- Reserve capacity requirement (sum of nominal power of biomass plants, geothermal and storage facilities)
- Constraint to assure that BE can be self sustained for 14 consecutive days without counting on wind and solar
- > Day-night and seasonal electricity and hydrogen storage options
- Transmission and distribution network capacities determined by model
- Price sensitivity for end uses
- Option for large scale industrial demand management (steel sector)

> Curtailment

Assumptions

- » Belgian GDP: increases at an AAGR of 1.8% in 2010-2050
- » Fuel prices: from the Energy roadmap 2050, Reference scenario, crude oil to some 127 \$'08/bbl in 2050
- » Biomass: price of imported biomass increases to some 157 \$'08/bbl in 2050
- » Carbon price: $15 \in /tCO_2$ in 2020, $51 \in /tCO_2$ by 2050
- » CCS technologies: not allowed
- » Nuclear: 2012 legislation on the phasing out of the nuclear power plants
- » Electricity imports: limited to 5.8 TWh (average Belgian net imports 2003-2010)
- » Targets: 35% of primary energy in 2030, 65% in 2040, 100% in 2050

Assumptions on renewable costs

	CAPEX 2020	CAPEX 2050	FIXOM 2020	FIXOM 2050	Lifetime
Geothermal with ORC HDR	6248	5742	207	153	25
Geothermal with ORC	4166	3828	157	119	25
PV Roof panel High Price	1000	1000	10	10	25
PV Roof panel Low Price (standard runs)	1000	500	10	5	25
PV Roof panel Very Low Price	500	371	5	4	25
Wood - Steam turbine	1396	1236	50	50	30
Wind Offshore close	1807	1441	68	68	20
Wind Offshore far	1988	1585	68	68	20
Wind Offshore very far	2711	2161	68	68	20
Wind Onshore	1031	862	22	18	20

Assumptions on electricity storage costs

	Investment €/kWh							
	Efficiency C -rate		2010	2050 Li	fe N	Max -Cap		
High efficiency Day-Night	0.9	0.3	500	400	10			
Low efficiency Day-Night	0.7	0.3	200	160	5			
High efficiency -seasonal	0.95	5 0.03	500	400	10			
Low efficiency - seasonal	0.55	5 0.03	20	10	10			
Smart grids	0.98	3 0.03	53	53	10	15 GWh		
Pumped storage	0.74	0.25	N.A.	N.A.	50	5 GWh		

Primary energy supply in 2050

Federal Planning Bureau

sion on technology

© 2013, VITO NV

Final energy consumption

Electricity production (LHS) and capacities (RHS)

Storage technologies

Cumulative investment requirements (2013-2050)

Costs: Cumulative additional investment expenditures in the electricity sector (M€2005)

Cost of renewable energy scenarios (in % GDP 2050)

23/01/2017 © 2013, VITO NV

Federal Planning Bureau

sion on technology

Costs: Additional cost incl. avoided GHG damage cost (M€2005), 2050

 Total annual add. cost wrt REF, when (global) benefit of avoided GHG in 2050 is included

Results

Space requirement (2050) (km²)

22 22

Special results: Renewables penetration in electricity sector

23/01/2017 © 2013, VITO NV

23

Electricity prices

Federal Planning Bureau

vision on technology

© 2013, VITO NV

Special results: Steel production

- » Flexible steel production saves 600 m € in 2050 or 17% of total revenues of the sector
- » Flexible steel production is competitive in wind scenario

Employment

Employment: Some estimations

- The RES trajectories all create more job-years or FTE's than REF
- REF already integrates a lot of renewables
- PV creates the most FTE's in any given year
- BIO and DEM are the second highest job generating scenarios

Annual job-years generated over REF due to the RES trajectories, 2020-2030 *Total FTE's*

Source: Wei et al. (2010), Federal Planning Bureau.

Conclusions (1/2)

Technically, a 100% renewable energy system is feasible without having to change the economic paradigm.

However, such a radical society transformation implies that:

- A highly ambitious renewable target goes hand in hand with a trend towards electrification: a doubling/tripling of power production is noted, curtailment is necessary
- Energy imports strongly diminish but remain important: imports tumble from 83% (REF) to [42%-15%] depending on the scenario
- Society shifts from a fuel intensive to a capital intensive society
- It seems cost efficient to maintain overcapacities, both in industry and power generation → new paradigm in energy perception

Conclusions (2/2)

 $_{\odot}$ This comes at a significant cost: in 2050, energy system costs increase by 20% wrt REF, BUT...

O When including disutility costs, the total add. cost is even higher (30%)
 O With disutility + GHG damage → net positive effect of some scenarios +/- 10
 B€/year (highly dependent on GHG damage cost assumptions)
 O 300 to 400 billion € of additional investments are needed
 O Sensitivity to fuel prices and PV costs
 O PV costs from 371 - 1000 €05/kW_p => variation of 0.5% of GDP2050
 O Variant of REF scenario with higher oil prices (250 \$08/boe in 2050) → additional costs decrease

Creation of additional employment

20 000 to 60 000 additional full-time jobs in 2030
 Cost efficiency of adapting to energy flow variability

• Further research is certainly needed...

Thank you for your attention

Full report via Google: 100% renewable energy by 2050

- » Authors :
- » Wouter Nijs, wouter.nijs@vito.be
- » Jan Duerinck, jan.duerinck@vito.be
- » Danielle Devogelaer, dd@plan.be
- » Dominique Gusbin, <u>dg@plan.be</u>
- » Yves Marenne, <u>yves.marenne@icedd.be</u>
- » Marco Orsini, <u>marco.orsini@icedd.be</u>
- » Marie Pairon, <u>marie.pairon@icedd.be</u>

